18.1. Không gian véctơ đối ngẫu Giả sử $V$ là một không gian véctơ hữu hạn chiều trên trường $\mathbb{K}$. $\textbf{Định nghĩa 18.1.}\ $ Không gian $\mathcal{L}(V,\mathbb{K})$ của các ánh xạ tuyến tính từ $V$ vào $\mathbb{K}$ được gọi là không gian véctơ đối ngẫu của $V$ , ký hiệu bởi $V^*$. Mỗi phần tử của $V^*$ được gọi là một dạng tuyến tính trên $V$ . $\textbf{Nhận xét 18.2.} \ $ Từ Hệ quả 16.8, ta có $$\dim(V^*)=\dim(\mathcal{L}(V,\mathbb{K}))=\dim(V)\cdot \dim(\mathbb{K})=\dim(V).$$ $\textbf{Ví dụ 18.3.}\ $ Ánh xạ $f\colon \mathbb{R}^3\rightarrow\mathbb{R}$ cho bởi $f([x,y,z]^T)=x-2y+z$ là một dạng tuyến tính trên $\mathbb{R}^3$. $\textbf{Ví dụ 18.4.}\ $ Lấy $(\lambda_1,\dots,\lambda_n)\in\mathbb{K}^n$. Khi đó ánh xạ $f\colon\mathbb{K}^n\rightarrow\mathbb{K}$ cho bởi \[ [x_1,\dots,x_n]^T \mapsto \lambda_1 x_1+\dots+\lambda_n x_n \] là một dạng tuyến tính trên $\mathbb{K}^n$. Tổng quát hơn, ta có $\textbf{Mệnh đề 18.5.} \ $ Cho $V$ là k