Skip to main content

Mục lục

Về chúng tôi

Đây là phiên bản trực tuyến của Giáo trình Đại số tuyến tính I. 

Giáo trình này được viết bởi Phạm Đình Đồng, Trần Nguyễn Khánh Linh, Lê Ngọc Long và Huỳnh Đình Tuân, giảng viên Khoa Toán học, Trường ĐHSP - Đại học Huế. 

Giáo trình này được dùng để dạy học học phần Đại số tuyến tính I, mã số: MAT04413.

Comments

Popular posts from this blog

Bài 8: CÁC PHÉP TOÁN TRÊN MA TRẬN

Trong các mục trước, ma trận là một công cụ hữu hiệu dùng để giải hệ phương trình tuyến tính. Thật ra, chính bản thân nội tại của ma trận cũng có nhiều tính chất thú vị. Các phép toán được giới thiệu sau đây cho thấy sự hữu ích của nó về cả lý thuyết và thực hành trong các chương tiếp theo. Chẳng hạn, nếu xem ma trận là một ngôn ngữ để diễn tả khái niệm trừu tượng ánh xạ tuyến tính trong Chương 4, thì các phép toán này là vốn từ vựng cần thiết. 8.1. Cộng hai ma trận, nhân ma trận với một số Hai phép toán đầu tiên được giới thiệu ở đây là phép cộng hai ma trận và nhân ma trận với một số. Cho $\mathbb{K}$ là trường số ($\mathbb{Q}$, $\mathbb{R}$ hay $\mathbb{C}$), $m,n$ là hai số nguyên dương, và cho hai ma trận $A=(a_{ij})_{m\times n}$, $B=(b_{ij})_{m\times n} \in\mathrm{Mat}_{m,n}(\mathbb{K})$ và $\lambda\in \mathbb{K}$. $\textbf{Định nghĩa 8.1.}\ $ $\textbf{Tổng}$ của hai ma trận $A$ và $B$, ký hiệu là $A+B$, là một ma trận cấp $m\times n$ trên trường $\mathbb{K}$ xác định bởi...

Mục lục

LỜI NÓI ĐẦU Chương I: KIẾN THỨC CHUẨN BỊ    1 TẬP HỢP  2 ÁNH XẠ  3 VÀNH VÀ TRƯỜNG SỐ  Chương II: MA TRẬN VÀ HỆ PHƯƠNG TRÌNH TUYẾN TÍNH   4 GIỚI THIỆU VỀ HỆ PHƯƠNG TRÌNH TUYẾN TÍNH  5 MA TRẬN   6 PHƯƠNG PHÁP KHỬ GAUSS-JORDAN   7 BIỆN LUẬN HỆ PHƯƠNG TRÌNH VÀ ỨNG DỤNG  8 CÁC PHÉP TOÁN TRÊN MA TRẬN  9 MA TRẬN KHẢ NGHỊCH VÀ CÁC TÍNH CHẤT  Chương III: KHÔNG GIAN VÉCTƠ  10 KHÁI NIỆM VỀ KHÔNG GIAN VÉCTƠ  11 HỆ VÉCTƠ ĐỘC LẬP TUYẾN TÍNH 12 CƠ SỞ VÀ CHIỀU CỦA KHÔNG GIAN VÉCTƠ 13 TỌA ĐỘ VÀ MA TRẬN CHUYỂN CƠ SỞ  14 TỔNG VÀ TỔNG TRỰC TIẾP Chương  IV: ÁNH XẠ TUYẾN TÍNH   15 ÁNH XẠ TUYẾN TÍNH  16 MA TRẬN CỦA ÁNH XẠ TUYẾN TÍNH  17 ẢNH VÀ HẠT NHÂN CỦA ĐỒNG CẤU  18 KHÔNG GIAN VÉCTƠ ĐỐI NGẪU Chương V: ĐỊNH THỨC VÀ ỨNG DỤNG   19 ĐỊNH THỨC CỦA MA TRẬN   20 KHAI TRIỂN ĐỊNH THỨC.  21 CÁC ỨNG DỤNG CỦA ĐỊNH THỨC   Chương VI: GIÁ TRỊ RIÊNG V...

Bài 3: VÀNH VÀ TRƯỜNG SỐ

Trong mục này chúng ta sẽ giới thiệu ngắn gọn các khái niệm ``tổng quát'' về vành, trường và vành đa thức trên trường cùng một số tính chất cơ bản của chúng. Tiếp đó chúng ta sẽ xem xét về cấu trúc của trường số phức và các biểu diễn của số phức. 3.1. Vành Giả sử $R$ là một tập hợp tùy ý khác rỗng. Một $\textbf{phép toán }$ ``$\ast$'' trong $R$ là một quy tắc ứng mỗi cặp $(a,b)\in R^{2}$ với một phần tử của $R$, ký hiệu là $a\ast b$. Nói cách khác, mỗi phép toán ``$\ast$'' trong $R$ là một ánh xạ \begin{align*} \ast: R^{2} &\longrightarrow R,\\ (a,b) &\longmapsto f(a,b)=a\ast b. \end{align*} Chẳng hạn, ta có phép toán cộng $a+b$ và phép toán nhân $a\cdot b$ thông thường trong các tập số $\mathbb{N}$, $\mathbb{Z}$, $\mathbb{Q}$, $\mathbb{R}$. $\textbf{Định nghĩa 3.1.}\ $ Một $\textbf{vành}$ $R$ là một tập khác rỗng có hai phép toán cộng và nhân $$ +: R\times R\rightarrow R, (a, b)\mapsto a+b,\quad \cdot: R\times R\rightarrow R, (a, b)\mapsto a\...