21.1. Hệ phương trình Cramer Bây giờ ta áp dụng định thức để tìm nghiệm của hệ phương trình tuyến tính đặc biệt dưới đây. $\textbf{Định nghĩa 21.1.}$ Hệ phương trình tuyến tính $A\cdot\mathbf{x}=\mathbf{b}$ được gọi là $\textbf{hệ phương trình Cramer}$ nếu ma trận hệ số $A$ của nó là ma trận vuông khả nghịch (tức là nếu nó có số phương trình bằng số ẩn và $\det(A)\ne 0$). Giả sử $A\cdot\mathbf{x}=\mathbf{b}$ là một hệ phương trình Cramer. Khi đó hệ phương trình có nghiệm duy nhất định bởi \begin{equation}\tag{21.1} \mathbf{x} = A^{-1}\cdot (A\cdot\mathbf{x}) = A^{-1}\cdot\mathbf{b} \end{equation} Hơn nữa, ta có thể xác định nghiệm $\mathbf{x}$ bằng công thức sau mà không nhất thiết phải tính cụ thể ma trận nghịch đảo. Gọi $A_i$ là cột thứ $i$ của ma trận $A$ ($i=1,\dots,n$). $\textbf{Định lý 21.2} [\textbf{Công thức Cramer}] \ $ Hệ phương trình Cramer $A\cdot\mathbf{x}=\mathbf{b}$ có một nghiệm duy nhất được tính bằng công thức \begin{equation}\tag{21.2} x_j = \frac