Trong mục này, chúng ta sẽ nghiên cứu mối quan hệ giữa một đối tượng mang tên ``$\textit{ma trận}$'' và hệ phương trình tuyến tính. Ma trận là một trong những công cụ hữu ích để tìm nghiệm của hệ phương trình tuyến tính và cũng như cho ta cấu trúc nghiệm của hệ phương trình tuyến tính. Dưới đây, $\mathbb{K}$ là ký hiệu để chỉ một trường số ($\mathbb{Q}$, $\mathbb{R}$ hay $\mathbb{C}$). 5.1. Định nghĩa về ma trận $\textbf{Định nghĩa 5.1.}\ $ Cho $m,n$ là các số nguyên dương. Một $\textbf{ma trận}$ cấp $m\times n$ là một bảng số hình chữ nhật gồm $mn$ số $a_{ij}\in \mathbb{K}$ ($i=1,\dots,m$; $j=1,\dots,n$) được xếp thành $m$ dòng và $n$ cột $$ \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots&\vdots&\ddots&\vdots\\ a_{m1} & a_{m2} & \cdots & a_{mn} \\ \end{bmatrix}. $$ Các số $a_{ij}$ nằm ở dòng thứ $i$ và cột thứ $j$ được gọi là các phần tử của ma trận. Người ta t